Search results

1 – 2 of 2
Article
Publication date: 5 June 2019

Hongjun Xing, Kerui Xia, Liang Ding, Haibo Gao, Guangjun Liu and Zongquan Deng

The purpose of this paper is to enable autonomous door-opening with unknown geometrical constraints. Door-opening is a common action needed for mobile manipulators to perform…

Abstract

Purpose

The purpose of this paper is to enable autonomous door-opening with unknown geometrical constraints. Door-opening is a common action needed for mobile manipulators to perform rescue operation. However, it remains difficult for them to handle it in real rescue environments. The major difficulties of rescue manipulation involve contradiction between unknown geometrical constraints and limited sensors because of extreme physical constraints.

Design/methodology/approach

A method for estimating the unknown door geometrical parameters using coordinate transformation of the end-effector with visual teleoperation assists is proposed. A trajectory planning algorithm is developed using geometrical parameters from the proposed method.

Findings

The relevant experiments are also conducted using a manipulator suited to extreme physical constraints to open a real door with a locked latch and unknown geometrical parameters, which demonstrates the validity and efficiency of the proposed approach.

Originality/value

This is a novel method for estimating the unknown door geometrical parameters with coordinate transformation of the end-effector through visual teleoperation assists.

Details

Assembly Automation, vol. 39 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 5 August 2022

Jianqing Hu, Hongjun He, Feiliang Dai, Xingyu Gong and Haowei Huang

The purpose of this paper is to develop the efficiency of styrene-acrylate (SA) emulsions for polymer cement waterproof coatings with improved bacteria resistance and mechanical…

Abstract

Purpose

The purpose of this paper is to develop the efficiency of styrene-acrylate (SA) emulsions for polymer cement waterproof coatings with improved bacteria resistance and mechanical properties.

Design/methodology/approach

For effective bacteria resistance and excellent mechanical properties, various concentrations of methacryloxyethylhexadecyl dimethylammonium bromide (MHDB) were synthesised and incorporated into SA emulsions. The properties of SA emulsions modified with MHDB were characterised and compared with those of unmodified ones according to the formulations of polymer cement waterproof coatings.

Findings

The SA emulsions modified with MHDB exhibited significant enhancement of bacteria resistance and mechanical properties over the unmodified ones. The positive quaternary nitrogen and long-chain alkyl groups of MHDB in SA emulsions could attract phospholipid head groups of bacterial and insert them into the cell wall, which results in biomass leak and bactericidal effect. Moreover, MHDB as a softened monomer was beneficial to the synthesis of SA copolymer with low glass-transition temperature (Tg), then the copolymer and cement would form a more compact film which was the main reason for the enhancement of mechanical properties.

Research limitations/implications

The modifier MHDB was synthesised from diethylaminoethyl methacrylate (DEAM) and 1-bromohexadecane. Besides, the congeners of MHDB could be synthesised from DEAM and 1-bromododecane, 1-tetradecyl dromide, 1-octadecyl bromide, etc. In addition, the efficiency of other modifications into SA emulsions for antibacterial polymer cement waterproof coatings could be studied as well.

Practical implications

The method provided a practical solution for the improvement of water-based antibacterial acrylate polymer cement waterproof coatings.

Originality/value

The method for enhancing bacteria resistance and mechanical properties of the waterproof coating was novel and valuable.

Details

Pigment & Resin Technology, vol. 53 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 2 of 2